228 research outputs found

    An initial evaluation of MathPad(2): A tool for creating dynamic mathematical illustrations

    Get PDF
    MathPad(2) is a pen-based application prototype for creating mathematical sketches. Using a modeless gestural interface, it lets users make dynamic illustrations by associating handwritten mathematics with free-form drawings and provides a set of tools for graphing and evaluating mathematical expressions and solving equations. In this paper, we present the results of an initial evaluation of the MathPad(2) prototype, examining the user interface\u27s intuitiveness and the application\u27s perceived usefulness. Our evaluations are based on both performance and questionnaire results including first attempt gesture performance, interface recall tests, and surveys of user interface satisfaction and perceived usefulness. The results of our evaluation suggest that, although some test subjects had difficulty with our mathematical expression recognizer, they found the interface, in general, intuitive and easy to remember. More importantly, these results suggest the prototype has the potential to assist beginning physics and mathematics students in problem solving and understanding scientific concepts. (c) 2007 Elsevier Ltd. All rights reserved

    A ShortStraw-based algorithm for corner finding in sketch-based interfaces

    Get PDF
    We present IStraw, a corner finding technique based on the ShortStraw algorithm. This new algorithm addresses deficiencies with ShortStraw while maintaining its simplicity and efficiency. We also develop an extension for ink strokes containing curves and arcs. We compare our algorithm against ShortStraw and two other state of the art corner finding approaches, MergeCF and Sezgin\u27s scale space algorithm. Based on an all-or-nothing accuracy metric, IStraw shows significant improvements over these algorithms for ink strokes with and without curves. (C) 2010 Elsevier Ltd. All rights reserved

    Reflecting on the Design and Implementation Issues of Virtual Environments

    Get PDF
    We present a candid reflection on the issues surrounding virtual environment design and implementation (VEDI) in order to: (1) motivate the topic as a research-worthy undertaking, and (2) attempt a comprehensive listing of impeding VEDI issues so they can be addressed. In order to structure this reflection, an idealized model of VEDI is presented. This model, investigated using mixed methods, resulted in 67 distinct issues along the model\u27s transitions and pathways. These were clustered into 11 themes and used to support five VEDI research challenges

    Effects of Clutter on Egocentric Distance Perception in Virtual Reality

    Full text link
    To assess the impact of clutter on egocentric distance perception, we performed a mixed-design study with 60 participants in four different virtual environments (VEs) with three levels of clutter. Additionally, we compared the indoor/outdoor VE characteristics and the HMD's FOV. The participants wore a backpack computer and a wide FOV head-mounted display (HMD) as they blind-walked towards three distinct targets at distances of 3m, 4.5m, and 6m. The HMD's field of view (FOV) was programmatically limited to 165{\deg}×\times110{\deg}, 110{\deg}×\times110{\deg}, or 45{\deg}×\times35{\deg}. The results showed that increased clutter in the environment led to more precise distance judgment and less underestimation, independent of the FOV. In comparison to outdoor VEs, indoor VEs showed more accurate distance judgment. Additionally, participants made more accurate judgements while looking at the VEs through wider FOVs.Comment: This paper was not published yet in any venue or conference/journal, ACM conference format was used for the paper, authors were listed in order from first to last (advisor), 10 pages, 10 figure

    The Effects of Object Shape, Fidelity, Color, and Luminance on Depth Perception in Handheld Mobile Augmented Reality

    Full text link
    Depth perception of objects can greatly affect a user's experience of an augmented reality (AR) application. Many AR applications require depth matching of real and virtual objects and have the possibility to be influenced by depth cues. Color and luminance are depth cues that have been traditionally studied in two-dimensional (2D) objects. However, there is little research investigating how the properties of three-dimensional (3D) virtual objects interact with color and luminance to affect depth perception, despite the substantial use of 3D objects in visual applications. In this paper, we present the results of a paired comparison experiment that investigates the effects of object shape, fidelity, color, and luminance on depth perception of 3D objects in handheld mobile AR. The results of our study indicate that bright colors are perceived as nearer than dark colors for a high-fidelity, simple 3D object, regardless of hue. Additionally, bright red is perceived as nearer than any other color. These effects were not observed for a low-fidelity version of the simple object or for a more-complex 3D object. High-fidelity objects had more perceptual differences than low-fidelity objects, indicating that fidelity interacts with color and luminance to affect depth perception. These findings reveal how the properties of 3D models influence the effects of color and luminance on depth perception in handheld mobile AR and can help developers select colors for their applications.Comment: 9 pages, In proceedings of IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 202

    ABSTRACT

    Get PDF
    Dance games are one of the most popular types of bodycontrolled console games, making them ideal candidates for initiating exertion in players who do not exercise regularly. However, in order to become effective tools for consistent cardiovascular exercise, dance games need to maintain interest over a long time span. One solution that could help with long-term engagement is the addition of more narrative, competitive, and decorative elements. While other gameplay genres utilize this content to keep players involved, motion-controlled dance games are just beginning to incorporate these elements. We built Dance Enhanced, a website designed to offer earnable content to players of the game Dance Central 2. We conducted a four-week study comparing a group of participants playing the game alone with a group that also had access to the website. In this paper, we discuss the methodology for designing and operating this study, as well as our results, which indicated the potential for higher interest in competition, characters and storylines when presented with extra content

    Exploring 3D gestural interfaces for music creation in video games

    Full text link
    In recent years the popularity of music and rhythm-based games has experienced tremendous growth. However almost all of these games require custom hardware to be used as input devices, and these devices control only one or two similar instruments. In this paper we describe One Man Band, a prototype video game for musical expression that uses novel 3D spatial interaction techniques using accelerometer-based motion controllers. One Man Band provides users with 3D gestural interfaces to control both the timing and sound of the music played, with both single and collaborative player modes. We further investigate the ability to detect different musical gestures without explicit selection of mode, giving the user the ability to seamlessly transition between instrument types with a single input device. A formal user study is then presented comparing the musical interface of One Man Band to that of Nintendo\u27s Wii Music. Our results indicate that users generally preferred the interface of One Man Band over that of Wii Music. We also found that users desire to express their own ideas and have explicit control of the melodies created in music-based video games. Copyright 2009 ACM

    Exploring 3d gesture metaphors for interaction with unmanned aerial vehicles

    Full text link
    We present a study exploring upper body 3D spatial interaction metaphors for control and communication with Unmanned Aerial Vehicles (UAV) such as the Parrot AR Drone. We discuss the design and implementation of five interaction techniques using the Microsoft Kinect, based on metaphors inspired by UAVs, to support a variety of flying operations a UAV can perform. Techniques include a first-person interaction metaphor where a user takes a pose like a winged aircraft, a game controller metaphor, where a user\u27s hands mimic the control movements of console joysticks, proxy manipulation, where the user imagines manipulating the UAV as if it were in their grasp, and a pointing metaphor in which the user assumes the identity of a monarch and commands the UAV as such. We examine qualitative metrics such as perceived intuition, usability and satisfaction, among others. Our results indicate that novice users appreciate certain 3D spatial techniques over the smartphone application bundled with the AR Drone. We also discuss the trade-offs in the technique design metrics based on results from our study. Copyright © 2013 ACM
    • …
    corecore